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A b s t r a c t .  Well-founded traffic models recognize the individual network user's right to the deci- 
sion as to when, where and how to travel. On the other hand, the decisions concerning manage- 
ment,  control, design and improvement investments are made by the public sector in the interest 
of the society as a whole. Hence, t ransportat ion planning is a characteristic example of a hier- 
archical process, in which the public sector at one level makes decisions seeking to improve the 
performance of the network, while at another level the network users make choices with regard to 
route, travel mode, origin and destination of their travel. Our objective is to provide a review on 
the current state of research and development in bilevel programming problems that  arize in this 
context, and at tract  the at tention of the global optimization community to this problem class of 
imense practical importance. 
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1. I n t r o d u c t i o n  

The movement of people and goods is as old as humanity itself. The need for 
transportation is an integrated part of any functioning society and stems from the 
interaction of social and economic activities. Society depends upon the mobility 
provided by transportation networks in order to make it possible for its members to 
participate in essential activities such as production, consumption, communication 
and recreation. 

Approximately 70% of the citizens of the industrialized countries cluster today in 
cities and their metropolitan areas. Many of these metropolitan areas face serious 
congestion problems due to the increasing number of vehicles, which threaten to de- 
teriorate the quality of life and increase air pollution. The environmental, economic, 
health and safety impacts are well known. It is estimated that only in the US, the 
traffic congestion in 1987 accounted for more than 2 billion vehicle hours of delay 
and that 2.2 billion gallons of excessive fuel consumption. The unavoidable dra- 
matic increase in travel demand coupled with the diminishing construction of new 
transportation facilities will unavoidably worsen the traffic conditions unless some 
innovative congestion-relief methods can be developed and implemented in time. 
Thus, it is not surprising that tremendous energy and money are put in studies, 
research and development at regional, national and international level. Within the 
EU, for instance, the DRIVE, SOCRATES and lately the TELEMATICS programs 
are to large extent concerned with traffic questions. 

The quantitative analysis of traffic phenomena yields network models that rep- 
resent the spatial characteristics of the underlying infrastructure. These models 
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are concerned with the prediction of the way in which vehicles use an existing or 
proposed infrastructure, or with the determination of the way in which such a uti- 
lization should be done. The presense of congestion is modeled with delay functions 
that  are nonlinear, however, in most applications convex or monotone increasing. 
Thus, the resulting models are formulated as convex cost optimization network 
models and more general versions of these models as nonlinear complementarity or 
variational inequality problems with embedded network structures. 

Well-founded models recognize the individual network user's right to the decision 
as to when, where and how to travel. On the other hand, the decisions concerning 
management, control, design and improvement investments are made by the public 
sector in the interest of the society as a whole. Hence, transportation planning is a 
characteristic example of a hierarchical process, in which the public sector at one 
level makes decisions seeking to improve the performance of the network, while at 
another level the network users make choices with regard to route, travel mode, 
origin and destination of their travel, etc. Thus, the responses of the network 
users can be predicted but not dictated. For example, society selects the links for 
capacity improvements but the users choose the routes they percieve to be best. 
Other examples include pricing of freigh transportation, traffic signal setting and 
origin-destination matrix estimation based on traffic counts, etc. Thus, the resulting 
models are formulated as bilevel programming models. 

The bilevel programming problem describes a hierarchical system which is com- 
posed of two levels of decision makers. The higher level decision maker, known as 
leader, controls the decision variables y E Y, while the lower level decision maker, 
known as follower, controls the decision variables x E X. The interaction between 
the two levels is modelled in their respective loss functions ~(x, y) and f (x ,  y). The 
leader and the follower play a Stackelberg duopoly game [82], [6]. The idea of the 
game is as follows: The first player, the leader, chooses y E Y to minimize the loss 
function 9~(z, y), while the second player, the follower reacts to leader's decision by 
selecting a strategy x E X that minimizes his loss function f (x ,  y), in full knowledge 
of the leader's decision. Thus, the follower's decision depends upon the leader's de- 
cision, i.e. x = x(y), and the leader is in full knowledge of this. Consequently, we 
have the following definition: 

Def in i t i on .  If there exists a mapping x : Y ~ X such that for any fixed y ~ Y, 

f(x(y),y)  <_ f(x ,y) ,  Vx e X, (1.1) 

and if there exists y* E Y such that 

~(x(y*),y*) ~_ ~(z(y),y), Vy E !/, (1.2) 

then the pair (z ~, y'~), where z* = x(y*), is called a Stackelberg equilibrium with 
the first player as leader and the second player as follower. 

Bilevel programming models are derived from the conditions (1.1)-(1.2) of the 
definition in a most natural way. Existence of Stackelberg equilibrium is guaranteed 
in the following case: 
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THEOREM 1.1 If  Y and X are compact sets in R m and R n respectively, and if ~ 
and f are real-valued continuous functions on X x Y ,  then a Stackelber equilibrium 
(with either player as leader) exists.[78] 

Consider the following bilevel program: 

( B P )  min ~(x(y),  y) (1.3) 
yEY 

where z(y) = a r g m i n f ( x , y )  (1.4) 
xEX 

We assume here that the sets X C_ R ~ and Y _C R "~ are convex and compact, that 
f and ~ are continuous on X x Y, and that  (1.4) has a unique solution x(y) ~ X 
for all y E Y. Thus, by Theorem 1.1, a Stackelberg equilibrium exists. 

Problem (1.3)-(1.4) constitutes a generalization of most bilevel models in traffic 
planning, with the variables y of first level (1.3) corresponding to the decision 
variables of the society (network planner) and with the second level (1.4) being 
in the role of an oracle that supplies the leader with predictions concerning the 
reaction of the network users with respect to their mode, route, destination, etc. 
decisions. 

1.1. P u r p o s e  

Stackelberg games and bilevel programming problems have been studied extensively 
in their general setting during the last decade [6], [5], [10], [11], [56], [4], [91], [92]. 
For a continuously updated bibliography on the subject see [95]. 

The purpose of the present paper is to provide information on the current state 
of the research in bilevel traffic planning problems, and attract the attention of 
the global optimization community to this problem class of immense practical im- 
portance. The resistance, due to inherent difficulty and size, of these problems to 
global optimization techniques constitutes a challenge to the community, especially 
as their bare existence requires their solution to global optimality. Indeed, non- 
proper solutions lead to both theoretical and real-world paradoxes, as for instance, 
in the case where increase in link capacities or construction of new links may de- 
teriorate the performance of the network, i.e., it may yield increased travel times 
and bad network utilization [16], [54]. 

No at tempt is made to cover all aspects of this large area of research and appli- 
cation development, we rather focus on a few basical classes of models and solution 
methods. 

1.2. O u t l i n e  

The paper is organized in the following way: First, the network equilibrium problem 
is presented and different formulations are given. Subsequently bilevel formulations 
of the network design, the signal setting and the origin/destination matrix adjust- 
ment problems are stated. In all three cases, the network equilibrium problem 
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constitutes the second level. Finally, we overview the proposed solution techniques 
and classify them into exact methods, single-level approximations, bicriterion ap- 
proximations, linear bilevel approximations, and local search methods. We conclude 
the paper with a few remarks in Section 4. 

2. M o d e l s  

In order to appreciate the practical importance and necessity of the bilevel pro- 
gramming models in traffic planning processes, one has to be conscious about the 
behavioral assumptions that govern the modelling process. Thus, although not 
in the realm of the (multiextremal) global optimization, instances of the network 
equilibrium problem are derived in section 2.1. This is the second level or follow- 
ers' problem in all bilevel traffic planning problems of the subsequent sections. We 
restrict the discussion to single transportation mode~ 

2.1. T h e  N e t w o r k  E q u i l i b r i u m  P r o b l e m  

Traffic equilibria models are descriptive in the sense that  their aim is to predict flow 
patterns and travel times which are the results of the network users' choices with 
regard to routes from their origins to their destinations. The input to the model 
is a complete description of the proposed or existing transportation system. The 
models are based on the behavorial assumption that "the journey times on all the 
routes used are equal, and less than those which would be experienced by a single 
vehicle on any unused route" [97]. This is Wardrop's first condition, also known 
as descriptive assignment or equal times journey principle. The traffic flows that 
satisfy this principle are usually referred to as user-equilibrium or user-optimum 
flows, since the routes chosen by the network users are those which are individually 
perceived to be the shortest under the prevailing conditions. The result from such 
individual decisions is a condition in which no user can reduce his/hers travel time 
by choosing unilaterally another route, i.e. it is an equilibrium condition in a 
noncooperative Nash-Cournot game where the players are associated with origin- 
destination pairs [50]. 

By contrast, system optimum flows satisfy Wardrop's second condition which 
states that "the average journey time is minimum". These flow patterns are char- 
acterized by the fact that all routes used between an origin and a destination 
have equal marginal travel times, that is, the total travel time in the network is 
minimized, and this is considered as the society's (the system's) understanding of 
optimal network utilization. However, the total travel t ime is generally not mini- 
mized by the user-optimal travel flows, and, moreover, observed flows in real life 
are closer to user than system optimum. The only situation in which the two flow 
patterns are equal is in the absence of congestion; this is an ideal case of course. 
For a thorough and up-to-date treatment of the network equilibrium problem see 
Patriksson[76]. 
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2.1.1. Nonlinear Network Model 

Traffic equilibrium problems are frequently divided into two modelling cases: fixed 
demand and elastic demand. In the fixed demand case, an origin-destination de- 
mand matrix _R = Irk], with rk being the travel demand between the kth origin- 
destination pair, is assumed given. By contrast, in the elastic demand case, the 
demand rk is modelled as a function of the least travel cost between the end points 
of the kth origin-destination pair. Thus, the user has a number of travel choices 
available and he/she is economically motivated in his/her decisions of making or a 
not the trip. 

Let G = (A, N) be the underlying network with N the set of nodes and A the set 
of links, K C N • N the set of origin-destination pairs, P~ the set of simple paths 
(routes) between the end nodes of the kth origin-destination pair, cvk and hvk the 
travel time and flow respectively on the pth route in Pk. 

According to Wardrp's equilibrium principle, if zrk denotes the shortest route 
travel time between the end nodes of the kth origin-destination pair, then 

hvk>O ~ %k=Trk, VpEP~,  (2.1) 

hvk = 0 ~ cpk > ~r~, Vp E Pk, (2.2) 

hold for all pairs in K.  Thus, including flow feasibility constraints, the user equi- 
librium conditions for fixed demand can be stated as follows: 

h;k(cvk  - ~rk) = O, Vp ~ Pk,  (2.3) 
cvk -- ~rk > O, Vp E Pk, (2.4) 

= (2.5) 
pEP~ 

hvk > 0, VpEPk (2.6) 

~'k _> O, (2.7) 

for all origin-destination pairs k. 
For every link a E A, let Xa denote the total link flow, and let Sa(Xa) be the link 

travel cost encountered by a user travelling on link a with a total flow Xa. Define 
the link-route incidence matrix A = [Skip], where 5kay is 1 if the route p of the kth 
origin-destination pair uses link a, and 0 otherwise. 

THEOREM 2.1 Assume that the network G = (N,A) is stronly connected with re- 
spect to the pairs in K, that the demand matrix R is nonnegative, and that the 
travel time function So is positive, strictly monotone increasing and continuously 
differentiable. Then, conditions (2.3)-(2. 7) are the first-order optimality conditions 
of the convex optimization problem [24] 

( F T A P )  min E ~*~  s~(t)dt, (2.8) 
aEA 0 
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subject to 

~_, hpk = ~ ,  Vk, (2.V) 
pEPk 

E E 5kaphpk = Xa, Va �9 A (2.10) 
k PEPk 

hpk _> O, Vp �9 Pk, Vk. (2.11) 

By contrast, the system optimum seeking problem can be stated as follows: 

( S T A P )  rain E sa(Xa)Xa, (2.12) 
aEA 

subject to (2.9)-(2.11). 
Both problems are strictly convex in link flows, that is, the opt imum link flow 

pattern is unique, however, they are only convex in route flows. 
To extend the user equilibrium model formulation to the elastic demand case, 

let rk = gk(~'), where 7r = [Trl,..., 7r~,...], that is, the travel demand rk between 
the end nodes of the kth origin-destination pair is a function of the vector of the 
cheapest route costs. Then Wardrop's user equilibrium principle for both route 
flows and demands are mathematically stated as follows: 

hpk > 0  ~ cpk=~r~, V p E P k ,  (2.13) 

h p k = 0  ~ Cpk>__Trk, VpEPk ,  (2.14) 

rk > 0 ~ rk = g~(~) ,  (2.15) 

rk = 0 ~ g~(Tr) < 0, (2.16) 

for all pairs k. 
Introducing the flow feasibility requirements, the above equations lead, under 

the additional requirement of nonnegative gk on the nonnegative orthant, to the 
following conditions for an elastic demand user equilibrium: 

hpk(epk -- 7r~) = O, Vp C Pk, (2.17) 

cpk--Trk _> 0, V p e P k ,  (2.18) 

hp~ = g~(~), (2.19) 
p6.P~ 

hpk > 0, Vp �9 Pk (2.20) 

~rk k 0, (2.21) 

for all origin-destination pairs k. 
In the seminal work [12], Beckmann et al recognized in (2.17)-(2.21) an optimiza- 

tion problem. Indeed, assume that gk has the additional property of being contin- 
uous and strictly decreasing. Then it is invertible, in which case r~ -- gk(Trk) 
71" k = g - l ( r k )  , whenever rk > 0. 
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THEOREM 2.2 Assume that the network G = (N,A) is stronly connected with re- 
spect to the pairs in K, and that the travel time function s~ is positive, monotone 
increasing and continuously differentiable. Then, conditions (2.17)-(2.21) are the 
first-order optimality conditions of the convex optimization problem [12] 

( E T A P )  min E s~(t)dt - E g~ l(t)dt, (2.22) 
aEA k 

subject to 

= Vk, (2.23) 
pEPk 

E E 5k~phpk = xa, Ya �9 A (2.24) 
k pEP~ 

hp~ >_ O, Vp �9 Pk, Vk, (2.25) 

r~ _> 0, Vk. (2.26) 

2.1.2. Variational Inequality Formulation 

While in the classical traffic equilibrium models the link travel functions sa depend 
only on the link flow Xa, in the general case the link travel functions may also 
depend on the flow of neighbouring links, indeed on the entire link flow pattern 
x = [xl , . . . ,  xa,...]. The network equilibrium problem for such link functions was 
formulated as variational inequalities in the seminal papers [80], [22], [23] and as a 
nonlinear complementarity problem in [2]. 

Let s(x) = [ s l (x ) , . . . ,  s~(x),...] be the vector link travel function, c(h) = [cl(h),.. 
ck(h),...] the vector of route costs, where ck(h) is the vector of route costs [Ckp] 
for the kth origin- destination pair, i.e. ckp = ~aeA 5kapSa(X)' and let h = 
[hl , . . . ,  hk,. . .]  be the vector of route flows, where hk is the vector of route flows 
for the kth origin-destination pair. 

The fixed demand equilibrium assignment is given by the following theorem. 

THEOREM 2.3 Assume that the network G = (N, A) is stronly connected with re- 
spect to the pairs in K, that the demand matrix R is nonnegative, the route cost c 
is positive, continuously differentiable and monotone, and that the travel time s is 
positive, monotone and continuously differentiable. Then, the Wardrop conditions 
(2.3)-(2. 7) are equivalent to the variational inequality problem of seeking an h* E H 
such that 

c(h*)T(h- h*) >_ O, Yh E H, (2.27) 

where H is the polyhedron defined by (2.9)-(2.11). Moreover, the Wardrop condi- 
tions (2.3)-(2.7) are also equivalent to the variational inequality problem of seeking 
an x* E X such that 

s (x*) r (x - -  x*) > 0, Vx C X, (2.28) 
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where X is the polyhedron of feasible link flows implied by (2.9)-(2.11). 

Next we consider the elastic demand formulation of the problem. Let the demand 
function be gk(~'), where ~v is the vector of shortest route travel times for all origin- 
destination pairs of the network, and consider the vector demand function g(~-) = 
[ g l  �9 � 9  

THEOREM 2.4 Assume that the network G = (N, A) is strongly connected with re- 
spect to the pairs in K, that the route cost c is positive, continuously differentiable 
and monotone, and that the travel time s is positive, monotone and continuously 
differentiable. If  the demand function g is bounded from above, continuously dif- 
ferentiable, nonnegative, strictly monotone, and invertible, then the Wardrop con- 
ditions (2.17)-(2.21) are equivalent to the variational inequality problem of seeking 
an (h*, r*) E Hr such that 

c (h*)r(h-  h * ) -  g-l(r*)T(r--  r*) >_ O, V(h,r) E Hr, (2.29) 

where Hr is the polyhedron defined by (2.23)-(2.26) and r is the demand vector [rk]. 

When the link travel functions are strictly monotone and the demand function is 
strictly decreasing, the network equilibrium model has unique link flows, demands 
and origin to destination costs. This is an important result, as it allows comparisons 
between different potential configurations of the network. 

2.2. The  Network Design P rob lem 

The network design problem is concerned with the improvement of a transportation 
system through modification of link capacities, including addition (and sometimes 
deletion) of links. Since it is the public sector which is concerned with the man- 
agement of the transportation system, the objective is to minimize total system 
costs consisting of system travel cost in the sense of section 2.1, and investment. 
On the other hand, the system cannot prescribe the users' behavior and therefore 
the total travel time is computed by evaluating the objective function (2.12) for 
user-equilibrium flows which have to be predicted by solving the network equilib- 
rium problem. Thus, only the investment costs are controlled and allocated in an 
optimal way from the system's perspective. However, although unable to prescribe 
routes to the users, the system influences their choices by selecting subsets of links 
for improvements and making them more attractive than others. 

The bilevel formulation of the network design problem is due to LeBlanc, who in 
the seminal paper [60] presented a discrete case of the problem, and subsequently 
the continuous case in [3]. Only the continuous case is considered here. 

Let Ya be the modification (raising or lowering) made to the capacity of link 
a E A and denote y the corresponding vector. The link travel time 8 a is, of course, 
influenced by such capacity modifications. Therefore, Sa = Sa(Xa, ya). Let ea(Y~) 
be the investment on link a E A, and la and ua the lower and upper levels of allowed 
capacity modification. 
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The network design problem can then be stated as follows: 

(NDP)  n~n E Sa(Xa,Ya)Xa + E r (2.30) 
aEA aEA 

subject to 

la _<ya_< ua, V a E A  (2.31) 

where xa are the user-equilibrium link volumes predicted by solving the problem 
(c.f. section 2.1) 

E S  ~ min sa (t, ya)dt (2.32) 
aEA 0 

subject to (2.9)-(2.11)o 

THEOREM 2.5 _For fixed Ya, assume that the function sa(xa, Ya) is continuously 
differentiable, positive and strictly monotone increasing for all Za > O. Then, the 
second level problem (2.32) has a unique optimal solution [2]. 

A typical variant of the model is obtained by replacing the first level (2.30)-(2.31) 
with its budget-constrained counterpart, i.e., 

( B N D P )  min (2.33) E 8a(Xa' ya)Xa 
aEA 

subject to 

Ca(ya) _< b (2.34) 
aEA 

la <_ ya <_ ua, Va E A, (2.35) 

where b is the available budget. Other variants may be obtained by replacing the 
second level problem. 

The functional form of Ca varies with the situation that is modelled. Usually 
linearity (e.g. [49]) or convexity (e.g. [64]) is assumed. A number of specialized 
functional forms are studied in [65]. However, the convexity of r is questionable 
from the practical point of view, since, as observed in [3], convex investment func- 
tions result in minor modifications in the capacity of many arcs. Moreover, as 
discussed in [83], [84], economy-of-scale or s-shaped costs (i.e.d.c.-functions) are 
present in almost all real life applications. 

The system optimum network design problem is a single-level optimization prob- 
lem in which the users' behavior is ignored: 

(SNDP) min Z So(Xa,ya)Xa + Z Ca(Yo) (2.36) 
aEA aEA 

subject to 

la < ya <_ ua, Va E A (2.37) 
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and (2.9)-(2�9 
The functions sa(x~, y~) is usually assumed to have the form s~(~-~), conforming 

to the so-called BPR 1 function type, and to be positive, increasing function of the 
ratio ~-yo and continuously differentiable~ By conversion, s~(~-~j) = 0 ~ z~ = y~ = 
0. 

THEOREM 2.6 Underthe above assumptions, function xasa(Xa, Ya) iS convex. More- 
over, if ea(Ya) is linear or convex, problem (2.36)-(2.37) is a convex programming 
problem. 

2.3. T h e  Signal  S e t t i n g  P r o b l e m  

In contrast to the network design, the signal control is used as a tool to increase the 
performance of the transportation system without changes in the infrastructure. Its 
purpose is to promote safety, efficiency and convenience in the mobility of people 
and goods through better utilization of the existing infrastructure. 

The control adopted by the system influences the traffic pattern, that is, the signal 
control influences the values perceived by the users as travel costs and therefore 
induces new flow equilibria in the transportation networks. Such an effect can be 
achieved by changing link travel functions and delays at junctions. 

Following Gartner et al [47], [52], [19] formulate the signal setting problem (SSP) 
as a bilevel program, where the first level concerns the decision of the public network 
manager who establishes the control system, and the second level concerns the 
behavior of the network users in their choice of routes. This formulation respects 
the fact that the manager's decisions are based on the public interest, while the 
individual user is concerned only with his/her own travel costs�9 See also [64], [32], 
[33]. 

Since the design of the control can be interpreted as a way of manipulating the 
link capacities of the network, the mathematical programming model is equivalent 
to that for the network design problem (2.30)-(2.32). However, since signal control 
is less capital intensive, investment costs do not usually enter in the objective or 
the constraints. Interpreting y = [Yl , . . . ,Ya . . . .  ] as the network control system 
parameters, the manager is interesting in determining a mutually consistent user- 
equilibrium flow and control strategy. 

2.4. T h e  O r i g i n / D e s t i n a t i o n  M a t r i x  A d j u s t m e n t  P r o b l e m  

In most transportation planning applications, the input data which is mostly diffi- 
cult and expensive to obtain is the origin-destination (O-D) demand matrix�9 This is 
so because the demand data is not directly observeable, on the contrary, it requires 
extensive and expensive surveys which involve home and road based interviews. On 
the other hand, link volumes are easily obtainable within reasonable precision by 
simply counting the traffic at certain count-posts, either manually or automatically. 
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Consequently, the problem of estimating or adjusting an O-D matrix from observed 
traffic flows has attracted considerable attention [72], [74], [94], [35], [36]. These 
studies propose a large variety of models, which can be classified according to the 
way that  the observed data are used in the modelling and the way in which the 
O-D matrix is distributed over the paths of the network. 

As discussed by Fisk [35], [36], the model with flow dependent link travel times is 
a bilevel programming problem, O D P  below. This is a consequence of the equilib- 
rium assumption. The observed link flows a do not, in general, satisfy exactly these 
equilibrium conditions, and therefore one is interested in finding an equilibrium flow 
pattern x that  is close to the observed flows. However, the problem differs from 
those in section 2.2 and 2.3, since the leader is not trying to influence the network 
users. The second level program has here the bare role of a pure oracle. 

The formulation of the problem is as follows: 

( O D P )  min 

s.t 

where x(r) solves (c.f. E T A P )  

1 
~ ( x o ( r )  - ~o)2 (2.38) 
aE~ 

0 _< rk _< uk,Vk E K (2.39) 

min E f ~ ~  Sa(t)dt (2.40) 
x aEA ,,tO 

s.t. E hpk = rk,Vk E K (2.41) 
pEPk 

hpk >_ 0,Vp E Pk Nk E K (2.42) 

xa -- E E 5kaphpk,Va E A (2.43) 
k E K  pEPk 

Here, A denotes the subset of the arcs for which flow counts O~ a are available. 

THEOREM 2.7 Let Sa(Xa) denote the link cost for arc a and assume it to be contin- 
uously differentiable and strictly monotone increasing. Then, for fixed r, the second 
level program (2.40)-(2.43) has a strictly convex objective function and, if feasible, 
a unique optimal solution x(r). 

Since the O/D matrix adjustment problem as formulated above admits an infinite 
number of optimal solutions [81], there is a second version of the O D P  problem in 
which a regularization, in the sense of [88], [68], term is added to the objective of 
the first level problem, i.e. 

1 1 
( O D P ' )  mrin ~ E ( x a ( r )  - aa) 2 + ~ E ( r ~  - i l k )  ~ (2.44) 

aEA kEK 

Here/~ is a target O-D matrix. 
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3. Solut ion Me thods  

Real-world cases yield traffic planning problems of impressive sizes. For example, 
the network of the (part of) city of Barcelona, Spain, consists of 1020 nodes, 2522 
links and 7922 origin-destination pairs. The city of Link6ping, Sweden, which 
is far smaller than Barcelona but of large spatiality has a network consisting of 
300 nodes, 400 links and 7000 origin-destination pairs. Finally, the network of 
Winnepeg, Canada, has 1052 nodes, 2836 links and 4344 origin-destination pairs. 
The sizes of the resulting problems are left as an exercise to the reader. 

Despite the enormous sizes~ the convex programming problems of section 2.1, are 
efficiently solved through maximal utilization of the underlying problem structures, 
i.e. spatiality, sparsity and network (see e.g. Patriksson [76] for an extensive 
survey of methods). In particular, utilization of a column generation scheme, called 
Simplicial Decomposition [51], [57], [59], is able to solve these problems within a 
few minutes on sequential machines, while the Distributed Simplicial Decomposition 
[26] solves the problems within a few seconds on parallel machines. Methods based 
on the node-link representation of the problems are also quite efficient (see e.g. 
[62], [58], [28]). 

On the other hand, the bilevel programming problems in sections 2.2 to 2.4 are 
in another complexity class. Indeed, it has been shown in [53], [13], [9], [48] that 
even the linear case of the bilevel programming problem is NP-hard. Moreover, the 
studies [8], [10], [4], [91], [92] reveal the fact that when the first order optimality 
conditions of the second level problem are both necessary and sufficient, problem 
BP can be solved as a global optimization problem. 

Subsequently we overview the methods proposed for the solution of the problems 
in sections 2.2 to 2.4, as well as a few that potentially could be used for this 
purpose. The discussion is based on the model BP,  however, whenever necessary 
direct reference to problems in sections 2.2 to 2.4 is made. 

3.1. Exact  Me thods  

Very few exact methods have been proposed for the nonlinear bilevel programming 
problem in general and the traffic planning cases in particular. In their current 
state of development, these methods are unable to attack real-world cases of the 
size exemplified above with the Linkbping, Barcelona and Winnipeg networks. The 
inherent difficulty of the bilevel problem is one reason, however, a second impor- 
tant reason is that the underlying spatiality, sparsity and network structure of the 
problems are not incorporated in the derivation of the methods and consequently 
not exploited during the solution process, that is, the methods are of too general 
character. 
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3.1.1. Replacement of the Second Level with Karush-Kuhn-Tucker Conditions 

One of the first attempts to solve B P  to global optimality was made in [10]. The 
second level problem is replaced by its first order optimality (Karush-Kuhn-Tucker, 
K K T )  conditions. Under suitable regularity assumptions, K K T  are both neces- 
sary and sufficient.Thus, the obtained single level program was shown equivalent to 
BP .  Under the additional assumption of function separability, a branch-and-bound 
algorithm was proposed to find the global optimum. For the strictly convex case, 
[8] presented a more efficient branch-and- bound. In [4], it is demonstrated that 
the complicating complementarity constraint in K K T  can be replaced by an equiv- 
alent system of convex quadratic constraints, and that  B P  can be reduced to the 
equivalent problem of minimizing a concave objective function subject to a convex 
feasible region. A branch-and-bound algorithm is developed. 

3.1.2. Reformulation to Single Level d.c. Program 

In [70], following the technique of [91], [92], the optimal objective function value of 
BP,  v(y) = minxex(y) f ( x ,  y), is used to reduce B P  to an equivalent single level 
problem 

min ~(x, y) (3.1) 
yEY, xEX(y) 

subject to v(y) > f ( x , y ) .  (3.2) 

A branch-and-bound algorithm, based on Theorem 3.1 below, is proposed for this 
problem. 

THEOREM 3.1 The value function v is convex in y. Consequently the constraint 
(3.2) is a d.c. constraint. 

3.1.3. Variational Inequalities in the Second Level 

Reformulation of B P  to an equivalent single level program is succeeded in [64] 
by replacing the second level program with its first order variational inequality 
conditions for optimality (c.f. section 2.1). Thus, B P  is replaced by 

rain ~(x, y) (3.3) 
yEY, xEX 

subject to U~f(x ,  y )T(z  -- x q) <_ 0, Vx q E X. (3.4) 

In the network design case, it is sufficient to consider in (3.4) only extreme points 
of the flow polytope, that  is, only a finite number of constraints corresponding to 
x q with q E g(X).  The proposed exact algorithm starts with a restricted number 
of (3.4)-constraints, and successively generates new as needed. The extreme point 
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generator is the linearized (in the Taylor sense) approximation of the second level 
program, i.e. 

min V~f(2,  ~))Tx, (3.5) 
xEX 

where (~3, ~)) is the solution to the current restriction of problem (3.3)-(3.4). Notice 
the similarity of the approach to the well-known Benders scheme. 

3.2. H e u r i s t i c s  B a s e d  on  Single  Leve l  O p t i m i z a t i o n  

In contrast to the poor development of exact methods, the set of heuristics for 
the B P  in general and the bilevel traffic planning problems in particular is very 
rich. Many of these heuristics have been developed to attack B P  indirectly, i.e. 
by solving (perhaps to global optimality) other related single level problems. The 
replacement of B P  is not always explicit. A number of such heuristics are gathered 
and analysed in [65]. 

3.2.1. System Optimum 

The most straightforward approach of obtaining a single level optimization problem 
in the case of traffic planning is to ignore user behavior. For instance, in the case 
of network design, problem S N D P  instead of N D P  is solved. Of course, such an 
approach includes the danger for the occurence of traffic paradoxes[16], [54] and 
practically ignores the original problem totally. Therefore the development of such 
traffic planning approaches are dated to the era of 70's or to the noncongested case 
(see e.g. [18], [61], [83], [73], [84], [17], [74]). 

3.2.2. Mixed Approach 

In an at tempt to circumvent the drawbacks of system optimum network design, [77] 
considers a mixed modelling approach. A single level approximation to N D P  is 
introduced by adding the investment costs to the objective function of the second 
level problem. That is, the following problem instead of N D P  is solved, 

rain sa(t, ya)dt + E r (3.6) 
x ,y  aE A  0 aEA  

subject to (2.31) and (2.9)-(2.11). 
Of course, the optimum solution is neither system optimum nor does it obey the 

assumptions on the user behavior. 
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3.2.3. Block Coordinate Descent 

The most popular heuristic algorithm for bilevel traffic planning problems resem- 
bles the well-known coordinate descent method. For fixed yq E Y,  the second level 
problem in B P  can be solved for the optimal solution xq -= x(yq) E X .  Then, for 
this x(yq), the first level problem can be solved for a new yq+l = y(x(yq)). Repeat- 
ing the entire process for q = 0, 1, . . . ,  it will converge, under suitable assumptions, 
to a point (x*, y*), which, however, needs not be the global opt imum in B P ,  as in- 
tuitively cautioned in [83], [84]. This approach was suggested by [87] in the context 
of SSP ,  who also gave numerical evidence for the non-global optimality of (x*, y*). 
Subsequently the heuristic was analyzed in [64], [65], where it is shown to actually 
solve a certain single level convex optimization problem (c.f. F T A P  and E T A P ) .  
In [32], a numerical example is given where the algorithm converges to a Nash and 
not a Staekelberg equilibrium. See also [43], [49], [34], [52], [19], [101]. 

3.3. B i c r i t e r i o n  A p p r o a c h  

Following [7], [93] who proposed a bicriterion approach for the linear bilevel prob- 
lem, [63] proposed a similar approach for the case of the traffic network design 
problem N D P .  They replace B P  with the parametrized problem 

min %o(x, y) + (1 - 7 ) f ( x ,  y), 
xEX,yEY 

(3.7) 

where 7 E [0, 1]. Moreover, in order to fully adapt the approach in [7], LeBlanc 
and Boyee [63] developed a piecewise linear approximation to N D P .  Thus, the 
problem they were solving was a linear bicriterion problem. However, the approach 
was demonstrated inadequate in [13], [98], [66] with the means of counter examples. 
Deriving conditions under which an efficient point (Pareto optimum) to (3.7) also 
is a Stackelberg equilibrium in B P  is of importance here. The following result is 
from [69]. 

THEOREM 3.2 Consider the bicriteria problem 

min {~(x,y), f(x,y)}, 
xE , y E t  

(3.8) 

and assume that Vy ~ Y,  x(y) is a unique solution of (1.4), and that f ( x , y )  < 
9) y) < 9), x ,  y, Y.  Then, if y*) is a solu- 

tion to (1.3)-(1.~), then it is also an efficient solution to the vector problem (3.8). 
Conversely, i f(x*, y*) is an efficient point of (3.8) and x* is a solution to (1.4)for 
fixed y = y*, then y'~ is a solution to (1.3). 

Unfortunately, the typical functions involved i traffic planning do not satisfy the 
theorem's conditions. 
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3.4. Linear Bilevel  Model  Approximat ion  

Under the assumption that bilevel linear programs are "easier" than their nonlin- 
ear convex counterparts, linear bilevel approximations to B P  have been proposed. 
LeBlanc and Boyce [63], assuming linear investment functions in N D P ,  linearize 
(2.30)-(2.32) to 

min E E ca,~xam + E ~aY~ (3.9) 
Y 

aEA mEM~ aEA 

subject to Ya >__ 0,Va E A (3.10) 

where x = a r g m ~ n ~  ~ c,~.~x~.~ (3.11) 
aEA rnEM~ 

subject to E z a k -  E x~ k = r i k ,  V i E N ,  V k E K  (3.12) 
aeS(i) aCT(i) 

Xam = E xak,Va e A (3.13) 
mEM~ }EK 

O <_ xa,~ <_ u~m + pa,~ya, Vrn E Ma, Va E A (3.14) 

Xa,~ >_ 0, Va E A, Vk E K. (3.15) 

Here Ma is the set indexing the segments (c.f. cam) in the piecewise linear ap- 
proximation of total travel cost of link a, PamY~ are the capacity units received by 
the ruth segment of link a, pare is the prespecified proportion of added capacity 
to the mth segment of link a, Xar a is the total flow volume of the ruth segment 
of link a, ua,~ is the capacity of the mth segment of link a, Ca,~ and c~am are the 
coefficients of the ruth piece of link a for the system and the cumulative user travel 
costs respectively, xa} is the flow volume of the kth origin-destination pair on link 
a, X~m is the flow on the ruth piece of link a, S(i) is the set of link starting at node 
i, T(i) is the set of links terminating at node i, and rik is rk if i is the origin node 
of the kth pair, - rk  if i is the destination node of the kth pair, and 0 otherwise. 
Equations (3.12) are the node-arc flow balancing equations that correspond to the 
arc-path formulation in F T A P .  

The solution approach to (3.9)-(3.15) proposed in [63] consists of replacing the 
bilevel linear program by a parametrized single-level linear program as in (3.7), 
and it was based on the false conjecture that bilevel and bicriterion optimization 
are equivalent. Subsequently, Ben-Ayed et al [14] extended the reformulation (3.9)- 
(3.15) to include nonlinear, convex and concave, link investment functions. Appli- 
cation of the piecewise linear approximation approach to the Tunisian inter-regional 
highway network is presented in [15]. 

3.5. Bi level  Loca l  Search  

The algorithms discussed here constitute direct, but local, approaches to the solu- 
tion of B P, that is, in the spirit of traditional nonlinear programming, they compute 
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a stationary point, hopefully a local optimum, to BP.  From the point of view of 
traffic planning, we can say that they respect the user equilibrium principle. Un- 
fortunately, checking local optimality in bilevel programming, even in the all-linear 
case, is NP-hard [96]. Thus, there are no a priori guarantees on the quality of the 
produced point. 

We classify the algorithms into three classes; direct search, penalty function and 
descent search methods. See also [55], [95]. 

3.5.1. Direct Search 

The basic idea here is to accept the presence of the implicit functional x = x(y) 
in leader's problem (1.3) and base the search for a stationary point y* to (1.3) 
only on function evaluations. Each evaluation of ~(x(y), y) would, of course, re- 
quire the exact solution of the follower's problem (1.4). This means, in particular, 
that for the traffic planning problems of sections 2.2 to 2.4, a network equilibrium 
problem of some version in section 2.1 must be solved to optimality each time 
the system's objective function is evaluated. Although each instance of the net- 
work equilibrium problem can be solved quite efficiently, as mentioned in section 
3, the number of repeated solutions required by a direct search method (e.g. the 
Hook-Jeeves method [3]) soon becomes computationally prohibitive with increasing 
problem sizes. Moreover, in the presence of nondifferentiability, both the theoreti- 
cal and practical reputation of direct search methods is not the best (see e.g. [71]). 
Reduction in the number of network equilibrium problems that need to be solved 
is achieved in [86]. 

Friesz et al [46] try to overcome the tendency of the direct search to be trapped 
at narrow valleys and stationary points by introducing randomization of the trial 
points and embedding the method into an annealing scheme [1]. The Achilles 
heel of the simulated annealing approach is the identification of a good annealing 
schedule and the enormous amount of follower problems that have to be solved, one 
for each trial point. Friesz et al [46] partially circumvent this obstacle in the case 
of the network design problem (3.3)-(3.4) by storing path information generated 
during the search of first few hundreds or thousands of trial points and use them 
subsequently in reducing the effort needed for the solution of each of the follower 
problems. 

3.5.2. Penalty Function Methods 

For the general problem see the bibliography of [95]. In traffic planning, penalty 
methods have been proposed by e.g. Fisk [32], [33], particularly for the SSP prob- 
lem. Her approach is based on the variational inequality (c.f. section 2.1) formula- 
tion of the follower's problem (c.f. (3.3)-(3.4)). Thus, B P  takes the form 

min ~(x, y) (3.16) 
xEX,yEY 
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subject to s (x ,y )T(z - -  x) >_ O, Vz E X (3.17) 

Problem (3.16)-(3.17) can be simplified. For this, the following two theorems are 
required. 

THEOREM 3.3 Assume that s(x~y) is monotone in x for any fixed y E Y ,  then 
(3.I7) is equivalent to the following max-min problem [38] 

minz y s(x, y)r(z - x) (3.1S) 
xEX 

THEOREM 3.4 Let 

w(x, y) = ~ s ( x ,  y)~(z - x), (3.19) 

then x* is an optimal solution to (3.18) if, and only if, w(x*, y) = O. Moreover, if 
is not a solution, then y) < 0 [1041 

Function (3.19) is a so-called gap function. It helps in restating (3.16)-(3.17) in 
the simplified form below: 

min ~(x, y) (3.20) 
xEX,y f iY  

subject to w(x,y)  - 0 (3.21) 

Fisk's approach is based on penalizing constraints (3.21). A second reformulation 
of problem (3.16)-(3.18), equivalent to (3.20)-(3.21), is possible, if a gap function 
~(x, y), also attributed to [104], is utilized in place of w(x, y). The gap function 
w(x, y) is obtained by interchanging the order of min and max in Theorem 3.3. 
Then Theorem 3.4 is still valid, however, w(x, y) > 0 whenever x is not a solution 
to (3.18). 

3.5.3. Descent Search 

The methods in this class are designed to compute stationary points (and hopefully 
local optima) to B P  by searching along directions which are descent with respect 
to the leader's objective (1.3). 

The derivative information on the implicit functional x = x(y), needed for the 
computation of the descent direction, is obtained by various methods from the 
follower's problem. In particular, the work of Fiaceo [30], [31] and Wobin [89], [90] on 
sensitivity analysis of nonlinear programs and variational inequalities respectively, 
constitutes the basis for derivative calculations. In the seminal paper [56], Kolstad 
and Lasdon put the basis for the development of descent search algorithms. 

However, there are obstacles when trying to apply these results directly to traffic 
planning problems. In particular, as mentioned in section 2.1, the optimum route 
flows in the equilibrium network problem are not unique, even if the optimal link 
flows are. Thus, they do not meet the second-order sufficient condition for a local 
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isolated point. Therefore, the results of Fiacco and Tobin are not applicable without 
modifications. See also [44], [45], [21], [85], [29]. 

The generic scheme of bilevel descent direction algorithms is given below. It 
involves two basic components: (i) finding a direction of descent, and (ii) computing 
an optimal step length. Since each evaluation of the leader's objective function 
requires the solution of a network equilibrium problem, step length calculations 
constitute the more difficult component of a descent algorithm. 

. 

2. 

3. 
4. 

5. 
6. 
7. 

8. 
9. 

10. 

11. 
12. 
13. 
14. 

! Step 0 : Initialize 

Let yO E Y ! Feasible point 
~ 0 =  p(x(y0), yO) ! Objective function value 

q = 0 ! Iteration counter 

r epea t  
! Step 1 : Determine a direction of  descent 
d o E 7)(y ~ ! 7) denotes the cone of  feasible directions 

! Step 2 : Determine the optimal step length 

~(yq + pqd q) = miny:=_-~_pa~ e Y ~( x(y), y) 
! Step 3 : New iterate 

yq+l = yq + pqdq 
~q+l = ~ (x (yq+l ) ,  yq+l) 

q = q + l  
until(yq stationary) ! Termination 

Algorithms in this category have been proposed for the network design problem 
by [45] for the case in which the follower's problem is formulated as variational 
inequalities (c.f. section 2.1 and (3.16)-(3.17)) and by [85] for the case in which 
follower's problem is formulated as an optimization problem. Sensitivity analysis 
based on K K T  optimality conditions of the second level program is utilized to 
derive an equation system for the calculation of the derivatives of the implicit 
functional x = x(y). Descent algorithms based on quasi-Newton methods, and 
particularly BFGS, are developed. In [85] the Armijo step length rule is used. In 
an attempt to reduce excessive step length computations, [45] use predetermined 
step lengths. However, convergence of such heuristics cannot be guaranteed. 

For the signal setting problem S SP, descent algorithms based on sensitivity anal- 
ysis of the second level problem are proposed in [99], [100], [103]. 

Chen and Florian [21] consider a reformulation of B P  into a single level optimiza- 
tion problem of the form (3.1)-(3.2), however, with equality in (3.2). In particular, 
for the ODP ' ,  they derive the following important theorem (see also [40], [39]). 

THEOREM 3.5 Under the standard assumptions on sa(x), v(r) defined as the op- 
timal objective value of the second level problem (2.40)-(2.43) is Gdteaux differen- 
t!able with Vv(r) = ,~(r), where ,~(r) is the optimal Lagrangean multiplier of the 
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second level problem for a given r. Moreover, v(r) is a monotone and continuous 
function of r. 

This result is used in [40] to develop a descent algorithm for ODP '  by relaxing 
the equality form of (3.2) and attacking the resulting Augmented Lagrangean prob- 
lem through linearization. The algorithm is designed to work with link rather than 
route flows. An Armijo step length rule is used for the determination of the step 
length. Under certain assumptions, convergence to a stationary point of the ODP '  
problem is demonstrated. The same authors propose in [39] another descent algo- 
rithm based on linearization of an Augmented Lagrangean problem, however, the 
complementarity equations of the K K T  optimality conditions for the second level 
problem are relaxed instead of the equality (3.2). Subsequently, [41] realized that 
~ v ( r )  k = ~'-~aeA ~fak8a(Xa)~Vk E I~ where 7a~ are the arc flow proportions of the 
demands rk, defined by ~pePk 5~apTkp with 7kp being the proportion of demand 
rk assigned to path p, i.e. hpk = 7pkrk- Based on this fact, they propose an almost 
descent algorithm which in each iteration alternates between direction generation 
for the first level of ODP '  with 7 fixed and link flow (i.e. 7) generation by solving 
a corresponding (3.1)-(3.2) for fixed demands rk and equality in (3.2). They show 
that if the algorithm terminates, then the final point is a stationary point of the 
original problem ODP' .  Their analysis hold also for the algorithms of [81], [101]. 
See also [102]. 

For the N D P  problem, Davis [27] developed reduced gradient and sequential 
quadratic programming algorithms based on derivative information which is ob- 
tained from the second level program by replacing the deterministic modelling of 
section 2.1 with the so-called Stochastic User Equilibrium Assignment. In this set- 
ting, it is accepted that an individual's perceived travel costs are subject to random 
error. Consequently, some trips are assigned to routes having greater than minimal 
travel costs. However, the probability of a trip being assigned to a route is higher 
for lower cost routes. If 7ak (s) denotes the function which gives the probability of 
a trip between the kth origin-destination pair being using the link a and if 7kp(s) 
denotes the probability of choosing the pth route then 7ak (s) = ~pePk ~kapTkp(s). 
Daganzo [25] has shown that Xa = ~"~keg r~Tak(S), Va E A, where the probabilities 
7~k are computed through the probit model (see e.g. [79]). Davis uses these equa- 
tions in formulating a single level version of the network design problem, which he 
then solves with the aforementioned methods. 

4. Some Remarks  

Much progress has been made in understanding and modelling of hierarchical de- 
cision making and similar phenomena that arize during traffic planning processes. 
However, satisfactory solution methods for the resulting bilevel problems have not 
yet been developed. Although some progress has been made in this direction since 
the time for a similar conclusion by Friesz[42], currently, what are considered as 
the most promising methods are heuristics which do not even guarantee the local 



BILEVEL PROGRAMMING IN TRAFFIC PLANNING 401 

optimality of the final results. Moreover, the computational efford required by most 
of these methods is excessive, and therefore there is a considerable lack of computa- 
tional results for networks of the sizes mentioned in section 3. Thus, the derivation 
of efficient algorithms for the solution of bilevel traffic planning problems is both a 
theoretical and practical challenge. 

Acknowledgemen t s  

This work has been supported by the Swedish Communication Research Board 
(KFB). 

N o t e s  

1. Bureau of Public Roads 

References  

1. E. Aarts  and J. Korst (1990) Simulated Annealing and Boltzmann Machines - A Stochas- 
tic Approach to Combinatorial Optimization and Neural Computing, John  Wiley & Sons, 
Chichester 

2. H. Aashtiani  and  T. Magnanti  (1981) Equilibria on a congested t ranspor ta t ion  network, 
SIAM Journal on Algebraic and Discrete Methods, vol. 2, pp. 213-226 

3. M.S. Abdulaal  and  L.J. LeBlanc (1979) Continuous Equil ibrium Network Design Models, 
Transportation Research, vol. 13B, pp. 19-32 

4. F.A. A1-Khayyal, R. Horst and P.M. Pardalos (1992) Global Optimizat ion of Concave Func- 
tions subject  to Quadratic Constraints:  An Application in Nonlinear Bilevel Programming,  
In :: [5], pp. 125 - 147 

5. G. Anandal ingam and T.L. Friesz (1992) (Ed.s) Hierarchical Optimization, Annals of Oper- 
ations Research, vol. 34, J.C. Baltzer AG, Basel. 

6. J.P. Aubin (1979) Mathematical Methods o] Game and Economic Theory, North-Holland, 
Amsterdam. 

7. J.F. Bard (1983) An Efficient Point Algori thm for a Linear Two-Stage Optimizat ion Problem, 
Operations Research, vol. 31, pp. 670-684 

8. J.F. Bard (1988) Convex Two-Level Optimization, Mathematical Programming, vol. 40, pp. 
15-27" 

9. J.F. Bard (1991) Some Properties of the Bilevel Programming Problem, Journal of Opti- 
mization Theory and Applications, vol. 68, pp. 371-378 

10. J.F. Bard and  J.E. Fall((1982) An Explicit Solution to the Multilevel Programming Problem, 
Computers and Operations Research, vol. 9, pp. 77-100 

11. T. Baw and G.J. Olsder (1982) Dynamic Noncooperative Game Theory, Academic Press, 
London. 

12. M. Beckmann, C.B. McGuire and  C.B. Winsten (1956) Studies in Economics of Transporta- 
tion, Yale University Press 

13. O. Ben-Ayed, C.E. Blair (1990) Computat ional  Difficulties of Bilevel Linear Programming,  
Operations Research, vol. 38, pp. 556-560 

14. O. Ben-Ayed, D. E. Boyce and  C.E. Blair (1988) A General  Bilevel Linear Programming 
Formulat ion of the Network Design Problem, Transportation Research, vol. 22B, pp. 311-318 



402 ATHANASIOS MIGDALAS 

15. O. Ben-Ayed, C.E. Blair, D.E. Boyce and L.J. LeBlanc (1992) Construct ion of a Real-World 
Bilevel Linear Programming Model of the Highway Network Design Problem, In :: [5], pp. 
219-254 

16. J. Berechman (1984) Highway-Capacity Utilization and  Investment  in Transpor ta t ion Cor- 
ridors, Environment and Planning, vol. 16A, pp. 1475-1488 

17. M. Bierlaire and P.L. Toint (1995) MEUSE: An Origin-Destination Matrix Est imator  tha t  
Exploits Structure,  Transportation Research, vol.29B, pp. 47-60 

18. D.E. Boyce (1984) Urban  Transpor ta t ion Network-Equillbrium and Design Models: Recent 
Achievements and Future Prospects,  Environment and Planning, vol. 16A, pp. 1445-1474 

19. G.E. Cantarella and  A. Sforza (1987) Methods for Equil ibrium Network Traffic Signal Setting, 
In :: [75], pp. 69-89 

20. E. Cascetta and S. Nguyen (1988) A Unified Framework for Est imat ing or Updat ing Origin- 
Dest inat ion Matrices from Traffic Counts, Transportation Research, vol. 22B, pp. 437-455 

21. Y. Chen and M. Florian (1991) The Nonlinear Bilevel Programming Problem - A General 
Formulation and  Optimali ty Conditions, Centre de recherche sur les t ransports ,  Publicat ion 
No.794, Universit~ de Montreal, C.P.6128, Montrgzl, Quebec, H3C3JT, Canada  

22. S. Dafermos (1980) Traffic Equil ibrium and  Variational Inequalitie, Transportation Science, 
vol. 14, pp. 42-54 

23. S. Dafermos (1982) The General Mult imodal  Network Equil ibrium Problem with Elastic 
Demand, Networks, vol. 12, pp. 57-72 

24. S. Dafermos and F.T. Sparrow (1969) The Traffic Assignment Problem for a General  Network, 
Journal o/Research of the National Bureau o] Standards, vol. 73B, pp. 91-118 

25. C. Daganzo (1982) Unconstrained Extremal  Formulations of Some Transpor ta t ion  Equilib- 
r ium Problems, Transportation Science, vol 16, pp. 332-361 

26. O. Damberg and  A. Migdalas (1995) Efficient Solution of Traffic Assignment Problems with 
a Distr ibuted Simplicial Decomposition Algorithm, ( To appear) 

27. G.A. Davis(1994) Exact Local Solution of the Continuous Network Design Problem via 
Stochastic User Equil ibrium Assignment, Transportation Research, vol. 28B, pp. 61-75 

28. R.S. Dembo and U. Tulowitzkl (1988) Computing Equilibria on Large Mult icommodity Net- 
works: An Application of Truncated Quadratic Programming Algorithms, Networks, vol. 18, 
pp. 273-284 

29. A.H. deSilva and G.P. McCormick (1992) Implicit Defined Optimizat ion Problems, In :: [5], 
pp. 107-124 

30. A.V. Fiacco (1976) Sensitivity Analysis for Nonlinear Programming Using Penalty Methods, 
Mathematical Programming, vol.10, pp. 287-311 

31. A.V. Fiacco (1983) Introduction to Sensitivity and Stability Analysis in Nonlinear Program- 
ming, Academic Press, New York 

32. C.S. Fisk (1984) Game Theory and  Transpor ta t ion Systems Modelling, Transportation Re- 
search, vol. 18B, pp. 301-313 

33. C.S. Fisk (1984) Optimal Signal Controls on Congested Networks, Ninth International Sym- 
posium on Transportation and Traffic Theory, VNU Science Press, pp. 197-216 

34. C.S. Fisk (1986) A Conceptual Framework for Optimal Transpor ta t i ion Systems Planning 
with Integrated Supply and  Demand Models, Transportation Science, vol. 20, pp. 37-47 

35. C.S. Fisk (1988) On Combining Maximum Entropy Trip Matrix Es t imat ion  with User As- 
signment,  Transportation Research, vol. 22B, pp. 69-73 

36. C.S. Fisk (1989) Trip Matrix Est imat ion from Link Traffic Counts: The Congested Network 
Case, Transportation Research, vol. 23B, pp. 331-336 

37. C.S. Fisk and D. Boyce (1983) A Note on Trip Matrix Est imat ion from Link Traffic Count 
Data,  Transportation Research, vol. 17B, pp. 245-250 

38. C.S. Fisk and S. Nguyen (1982) Solution Algorithms for Network Equil ibrium Models with 
Assymetric User Costs, Transportation Science~ vol. 16, pp. 361-381 

39. M. Florian and Y. Chen (1991) A Bilevel Programming Approach to Es t imat ing  O-D Matrix 
by Traffic Counts, Centre de recherche sur les t ransports ,  Publicat ion No.750, Universit~ de 
Montreal, C.P.6128, Montreal, Quebec, H3C3JT, Canada 



BILEVEL PROGRAMMING IN TRAFFIC PLANNING 403 

40. M. Florian and  Y. Chen (1992) A Successive Linear Approximation Method for the Bilevel O- 
D Matrix Adjustment  Problem, Centre de recherche sur les t ransports ,  Publ icat ion No.807, 
Universit~ de Montreal, C.P.6128, Montreal,  Quebec, H3C3Jr,  Canada  

41. M. Florian and Y. Chen (1993) A Coordinate Descent Method for the Bilevel O-D Matrix 
Adjustment  Problem, Centre de recherche sur les t ransports ,  Publicat ion No.807, Universit~ 
de Montreal, C.P.6128, Montreal, Quebec, H3C3J7, Canada.  (Paper  presented at  the IFORS 
Conference in Lisbon, Portugal,  July 1993) 

42. T .  Friesz (1985) Transpor ta t ion  Network Equilibrium, Design and  Aggregation: Key Devel- 
opment and Research Opportunit ies,  Transportation Research, vol. 19A, pp. 413-427 

43. T.L. Frlesz and P.T. Harker (1985) Properties of the Iterative Optimizat ion-Equil ibrlum 
Algorithm, Civil Engineering System, vol. 2, pp. 142-154 

44. T.L. Friesz, R.L. Tobin and T. Miller (1988) Algorithms for Spatially Competi t ive Network 
Facility-Locatlon, Environment and Planning, vol. 15B, pp. 191-203 

45. T.L. Frlesz, R.L. Tobin, H. Cho and N.J. Mehta (1990) Sensitivity Analysis Based Heuristic 
Algorithms for the Mathemat ics  Programs with Variational Inequality Constraints,  Mathe- 
matical Programming, vol. 48, pp. 265-284 

46. T.L. Friesz, H.-J. Cho, N.J. Mehta, R.L. Tobin and G. Anandal ingam (1992) A Simulated 
Annealing Approach to the Network Design Problem with Variational Inequality Constraints ,  
Transportation Science, vol. 26, pp. 18-26 

47. N.H. Gartner,  S.B. Gershwin, J.D.C. Little and P. Ross (1980), Pilot Study of Computer-  
Based Urban Traffic Management ,  Transportation Research, vol. 14B, pp. 203-217 

48. P. Hansen, B. Jaumard  and G. Savard (1992) New Branch-and-Bound Rules for Linear Bilevel 
Programming,  SIAM Journal on Scientific and Statistical Computing, vol. 13, pp. 1194-1217 

49. P.T. Harker and T.L. Friesz (1984) Bounding the Solution of the Continuous Equil ibrium 
Network Design Problem, In :: Ninth Internat ional  Symposium on Transpor ta t ion  and Traffic 
Theory~ VNU Science Press, pp. 233-252 

50. A. Haurle and  P. Marcot te  (1986) A Game Theoretic Approach to Network Equilibrium, 
Mathematical Programming Study, vol. 26, pp. 252-255 

51. D.W. Hearn, S. Lawphongpanich and J.A. Ventura (1985) Finiteness in Restricted Simpliclal 
Decomposition, Operations Research Letters, vol. 4, pp.125-130 

52. G. Improta  (1987) Mathemat ical  Programming Methods for Urban  Network Control, In :: 
[75], pp. 35-68 

53. R. Jeroslow (1985) The Polynomial Hierarchy and a Simple Model for Competi t ive Analysis, 
Mathematical Programming, vol. 32, pp. 146-164 

54. W. K3del (1969) Graphentheoretische Methoden und ihre Anwendungen, Springer-Verlag, 
Berlin, pp. 56-59 

55. C.D. Kolstad (1985) A Review of the Literature on Bilevel Mathemat ica l  Programming.  Los 
Alamos National  Laboratory, Report  LA-10284-MS, Los Alamos, NM. 

56. C.D. Kolstad and L.S. Lasdon (1990) Derivative Evaluat ion and Computat ional  Experience 
with Large Bilevel Mathemat ical  Programming,  Journal of Optimization and Applications, 
vol. 65, pp. 485-499 

57. T. Larsson and M. Patriksson (1992) Simplicial Decomposition with Disaggregated Repre- 
sentat ion for the Traffic Assignment Problem, Transportation Science, vol. 26~ pp. 4-17 

58. T. Larsson~ A. Migdalas and M. Patrlksson (1993) The Application of Part ia l  Linearization 
Algori thm to the Traffic Assignment Problem, Optimization, vol. 28, pp. 47-61 

59. S. Lawphongpanich and  D.W. Hearn (1984) Simplicial Decomposition of the Asymmetric  
Traffic Assignment Problem, Transportation Research, vol. 18B, pp. 123-133 

60. L.J. LeBlanc (1975) An Algori thm for the Discrete Network Design Problem, Transportation 
Science, vol. 9, pp. 183-199 

61. L.J. LeBlanc and M. Abdulaal  (1984) A Comparison of User-Opt imum Versus System- 
Opt imum Traffic Assignment in Transpor ta t ion Network Design, Transportation Research, 
vol. 18B, pp. 115-121 

62. L.J. LeBlanc, R.V. Helgason and D.E. Boyce (1985) Improved Efficiency of the Frank-Wolfe 
Algori thm for Convex Network Programs, Transportation Science, vol. 19, pp. 445-462 



404 ATHANASIOS MIGDALAS 

63. L.J. LeBlanc and D.E. Boyce (1986) A Bilevel Programming Algori thm for Exact  Solution of 
the Network Design Problem with User Optimal Flows, Transportation Research, vol. 20B, 
pp. 259-265 

64. P. Marcotte (1983) Network Optimizat ion with Continuous Control Parameters ,  Transporta- 
tion Science, vol. 17, pp.181-197 

65. P. Marcotte (1986) Network Design Problem with Congestion Effects: A Case of Bilevel 
Programming,  Mathematical Programming, vol. 34, pp. 142-162 

66. P. Marcotte (1988) A Note on a Bilevel Programming Algori thm by LeBlanc and  Boyce, 
Transportation Research, vol. 22B, pp. 233-237 

67. P. Marcotte and  G. Marquis (1992) Efficient Implementat ion of Heuristics for the Continuous 
Network Design Problem, In :: [5], pp. 163-176 

68. A. Migdalas (1994) A Regularization of the Frank-Wolfe Method and Unification of Certain 
Nonlinear Programming Methods, Mathematical Programming, vol. 56, 331-345 

69. A. Migdalas (1995) When is Stackelberg Equil ibrium Pareto Optimum?, In :: P. Pardalos, et 
al (ed.s) Advances in Multicriteria Analysis, Kluwer Academic 

70. A. Migdalas and H. Tuy (1995) On the Bilevel Min Norm Problem, (T0 appear) 
71. M. Minoux (1986) Mathematical Programming - Theory and Algorithms, Translated from 

the Frence by S. Vajda, John Wiley & Sons, Chichester 
72. S. Nguyen (1977) Est imat ion of an O-D Matrix from Network Data  - A Network Equil ibrium 

Approach, Centre de recherche sur les t ransports ,  Publ icat ion No.60, Universit6 de Montr6al, 
C.P.6128, Montr6al, Qu6bec, H3C3J7, Canada 

73. S. Nguyen (1983) Inferring Origin-Destination Demands from Network Data,  Associaziione 
I tal iana di Recerca Operativa, Atti  delle Giomate di Lavoro 1983, Napoli - Castel dell' Oro, 
26-28 Settembre 1983,(see also [74]) 

74. S. Nguyen (1984) Est imat ing Origin-Destination Matrices from Observed Flows, In Trans- 
portation Planning Models, M. Florian (Ed.), pp. 363-380 

75. A.R. Odoni, L. Bianco and  G. Szeg5 (1987) (Ed.s) Flow Control of Congested Networks, 
NATO ASI Series, Series F: Computer  and Systems Sciences, vol. 38, Springer-Verlag, Berlin. 

76. M. Patriksson (1994) The TraJ~fic Assignment Problem - Models and Methods, VSP, Utrecht,  
The Netherlands 

77. H. Poorzahedy and M.A. Turnquist  (1982) Approximate Algorithms for the Discrete Network 
Design, Transportation Research~ vol. 16B, pp. 45-55 

78. M. Simaan and J.B. Cruz, Jr (1973) On the Stackelberg Strategy in Nonzero-Sum Games, 
Journal of Optimization Theory and Applications, vol 11, pp. 533-555 

79. Y. Sheffi (1985) Urban Transpor ta t ion Networks, Prentice Hall, Englewood Cliffs, NJ 
80. M.J. Smith (1979) Existence, Uniqueness and  Stability of Traffic Equilibria,  Transportation 

Research, vol. 1B, pp. 295-304 
81. H. Spiess (1990) A Gradient  Approach for the O-D Matrix Adjustment  Problem, Centre de 

recherche sur les t ransports ,  Publicat ion No.693, Universit~ de Montreal, C.P.6128, Montreal,  
Quebec, H3C3JT, Canada  

82. H. von Stackelberg (1952) The Theory o] the Market Economy, Oxford University Press. 
83. P.A. Steenbrink (1974) Transport  Network Optimizat ion in the Dutch Integral  Transporta-  

t ion Study, Transportation Research, vol. 8, pp. 11-27 
84. A. Steenbrink (1974) Optimization of Transport Networks, John Wiley & Sons, London 
85. S. Suh and T.J. Kim (1992) Solving Nonlinear Programming Models of the Equil ibrium 

Network Design Problem : A Comparat ive Review, In :: [5], pp. 203-218 
86. C. Suwansirikul and T.L. Friesz (1987) Equil ibrium Decomposed Optimizat ion : A Heuristic 

for the Continuous Equilibrium Network Design Problem, Transportation Science, vol. 21, 
pp. 254-263 

87. H. Tan, S.B. Gerashwin and  M. Athans (1979) Hybrid Optimizat ion in Urban Traffic Net- 
works, Report  DOT-TSC-RSP-79-7, MIT, Cambridge, Mass. 

88. A.N. Tikhonov and V.Y. Arsenln (1977) Solution of Ill-Posed Problems, Translated from the 
Russian by F. John, John Wiley & Sons, New York. 

89. R.L. Tobin (1986) Sensitivity Analysis for Variational Inequalities, Journal of Optimization 
Theory and Applications, vol. 48, pp. 191-204 



BILEVEL PROGRAMMING IN TRAFFIC PLANNING 4 0 5  

90. R.L. Tobin and T.L. Friesz (1988) Sensitivity Analysis for Equil ibrium Network Flows, Trans- 
portation Science, vol. 22, pp. 242-250 

91. H. Tuy, A. Migdalas and  P. V~rbrand (1993) A Global Optimizat ion Approach for the Linear 
Two-level Program, Journal of Global Optimization, vol. 3, pp. 1-23 

92. H. Tuy, A. Migdalas and  P. Vs (1994) A Quasiconcave Minimizat ion Method for 
Solving Linear Two-Level Programs, Journal of Global Optimization, vol. 4, pp. 243-263 

93. G.fJnlu (1987) A Linear Bilevel Programming Algori thm Based on Bicriteria Programming,  
Computers and Operations Research, vol. 14, pp. 173-179 

94. J.H. Van Zuylen and L.G. Willumsen (1980) The Most Likely Trip Matrix Est imat ion from 
Traffic Counts, Transportation Research, vol. 14B, pp. 281-293 

95. L.N. Vicente and P.H. Calamai (1994) Bilevel and  Multilevel Programming:  A Bibliographic 
Review, Journal o] Global Optimization, vol. 5, pp. 291-306 

96. L. Vicente, G. Savard and J. Jfidice (1994) Descent Approaches for Quadrat ic  Bilevel Pro- 
gramming,  Journal of Optimization Theory and Applications, vol. 81, pp. 379-399 

97. J.G. Wardrop (1952) Some Theoretical Aspects of Road Traffic Research, Proceedings of the 
Institute of Civil Engineering, Par t  II, pp. 325-378 

98. U.-P. Wen and S.-T. Hsu (1989) A Note on a Linear Bilevel Programming Algori thm Based 
on Bicreteria Programming,  Computers and Operations Research, vol. 16, pp. 79-83 

99. H. Yang and S. Yagar (1994) Traffic Assignment and Traffic Control in General Freeway- 
Arterial  Corridor Systems, Transportation Research, vol. 28B, pp. 463-486 

100. H. Yang and  S. Yagar (1995) Traffic Assignment and  Signal Control in Satura ted  Road 
Networks, Transportation Research, vol. 29A, pp. 125-139 

101. H. Yang~ T. Sasaki, Y. Iida and Y. Asakura (1992) Est imat ion of Origin-Destination Matrices 
from Link Traffic Counts on Congested Networks, Transportation Research, vol. 26B, pp. 
417-434 

102. H. Yang, Y.Iida and T. Sasaki (1984) The Equil ibrium-Based Origin-Destination Matrix 
Es t imat ion  Problem, Transportation Research, vol. 28B, pp. 23-33 

103. H. Yang, S. Yagar, Y. Iida and  Y. Asakura (1994) An Algori thm for the Inflow Control 
Problem on Urban  Freeway Networks with User-Optimal Flows, Transportation Research, 
vol. 28B, pp. 123-139 

104. S. Zukhovitshki,  R. Polyak and M. Pr imak (1971) Concave n-person Games (Numerical 
Methods),  Ekonom. i Mat. Metody, vol. 7, pp. 888-900 


